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1

The language of mathematics

Pure mathematics is concerned with the exploration of mathematical
concepts arising initially from the study of space and number. In order
to capture and communicate mathematical ideas we must make state-
ments about mathematical objects and much mathematical activity can
be described as the formulation of mathematical statements and then
the determination of whether or not such statements are true or false.
It is important to be clear about what constitutes a mathematical state-
ment and this is considered in this first chapter. We begin with simple
statements and then examine ways of building up more complicated
statements.

1.1 Mathematical statements

It is quite difficult to give a precise formulation of what a mathematical
statement is and this will not be attempted in this book. The aim here is
to enable the reader to recognize simple mathematical statements. First
of all let us consider the idea of a proposition. A good working criterion
is that a proposition is a sentence which is either true or false (but not
both). For the moment we are not so concerned about whether or not
propositions are in fact true. Consider the following list.

iy 1+1=2.
(ii) »=3.
(iii) 12 may be written as the sum of two prime numbers.
(iv) Every even integer greater than 2 may be written as the sum of
two prime numbers.
(v) The square of every even integer is even.
(vi) n is a prime number.
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(vii) n? —2n > 0.
(vili) m < n.
(ix) 12— 11.

(x) 7 is a special number.

Of these the first five are propositions. This says nothing about
whether or not they are true. In fact (i) is true and (ii) is false. Propo-
sition (iii) is true since 12 = 7+ 5 and 5 and 7 are prime numbers.}
Propositions (iv) and (v) are general statements which cannot be proved
by this sort of simple arithmetic. In fact it is easy to give a general proof
of (v) (see Exercise 3.3) showing that it is true. However, at the time
of writing, it is unknown whether (iv) is true or false; this statement is
called the Goldbach conjecture after Christian Goldbach who suggested
that it might be true in a letter to Leonhard Euler written in 1742.

On the other hand the others on the above list are not propositions.
The next two, (vi) and (vii), become propositions once a numerical value
is assigned to n. For example if n = 2 then (vi) is true and (vii) is false,
whereas if n = 3 then they are both true. The next, (viii), becomes a
proposition when values are assigned to both m and n, for example it
is true for m = 2, n = 3 =nd false for m = 3, n = 2. Sentences of this
type are called predicates. The symbols which need to be given values
in order to obtain a proposition are called free variables.

The word statement will be used to denote either a proposition or
a predicate. So in the above list the first eight items are statements.
We will use a single capital letter P or @ to indicate a statement, or
sometimes an expression like P(m,n) to indicate a predicate, with the
free variables listed in brackets.

The last two entries in the above list are not statements: (ix) is not
even a sentence and (x) doesn’t mean anything until we know what
‘special’ means. Very often mathematicians do give technical meanings
to everyday words (as in ‘prime’ number used in (iii) and (iv) above
and ‘even’ number used in (v)) and so if ‘special’ had been given such
a meaning as a possible property of a number then (x) would be a
proposition and so a statement. Of course the fact that (i) to (viii) are
statements relies on a number of assumptions about the meanings of the
symbols and words which have been taken for granted.

t A positive integer is a prime number if it is greater than 1 and is divisible only
by 1 and itself. Thus the first few prime numbers are 2, 3, 5, 7, 11, .... This
definition is discussed in Chapter 23.
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In particular it is quite complicated to give a precise definition of
the number 7 in statement (ii). The number 7 was originally defined
geometrically as the ratio between the length of the circumference of
a circle and the length of the diameter of the circle. In order for this
definition to be justified it is necessary to define the length of the cir-
cumference, a curved line, and having done that to prove that the ratio
is independent of the size of the circle. This was achieved by the Greeks
in classical times. A regular hexagon inscribed in a circle of unit di-
ameter has circumference 3 and so it is clear that # > 3.1 Archimedes
showed by geometrical means in his book On the measurement of the
circle that 3% <m < 3% and also provided a beautiful proof of the
formula 72 for the area of a circle of radius . The modern definition
of 7 is usually as twice the least positive number for which the cosine
function vanishes, and the details may be found in any text on analysis
or advanced calculus.}

1.2 Logical connectives

In mathematics we are often faced with deciding whether some given
proposition is true or whether it is false. Many statements are really
quite complicated and are built up out of simpler statements using var-
ious ‘logical connectives’. For the moment we restrict ourselves to the
simplest of these: ‘or’, ‘and’ and ‘not’. The truth or falsehood of a
complicated statement is determined by the truth or falsehood of its

component statements. It is important to be clear how this is done.

The connective ‘or’

Suppose that we say

For integers a and b, ab=0ifa=0o0r b= 0.

The statement ‘a = 0 or b = 0’ is true if a = 0 (regardless of the value
of b) and is also true if b = 0 (regardless of the value of a). Notice that
the statement is true if both a = 0 and b = O are true. This is called

t Some fundamentalist Christians have claimed that 1 Kings vii 23, in which a round
object of diameter 10 cubits is stated to have a circumference of 30 cubits, ‘proves’
that # = 3 but mathematical truth can never be a matter simply of faith (nor
can religious truth either in the author’s experience) and in any case there is no
suggestion in the biblical passage that the measurements were highly accurate!

1 See for example R. Haggerty, Fundamentals of mathematical analysis, Addison-
Wesley, Second edition 1993.
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the ‘inclusive’ use of ‘or’. Its meaning is best made precise by means of
a truth table. Any statement may be either true or false: we say that
‘true’ and ‘false’ are the two possible truth values for the statement. So
given two statements P and @ each has two possible truth values giving
four possible combinations in all. The truth table for ‘or’ which follows
specifies the truth value for ‘P or )’ corresponding to each possible
combination of truth values for P and for @, one line for each. In the
table T indicates ‘true’ and F indicates ‘false’.

Table 1.2.1
P Q@ l PorQ
T T T
T F T
F T T
F F F

In this table, the truth values in the second line for example indicate
that if P is true and @ is false then the statement ‘P or @’ is true.

‘P or @ is called the disjunction of the two statements P and Q.

In everyday speech ‘or’ is often used in the exclusive sense as in the
first sentence of this section: ‘we are faced with deciding whether some
given proposition is true or whether it is false’, in which it is implicitly
understood (and emphasized by the uses of the word ‘whether’) that it
is not possible for a proposition to be both true and false.

To give another everyday example of the ‘exclusive or’, when we say
‘everyone will travel there by bus or by train’ this would normally be
taken to mean that everyone uses one or other form of transport but not
both. If we wanted to allow for someone using both we would probably
say ‘everyone will travel there by bus or by train or by both’. In practice
the precise meaning of ‘or’ is made clear by the context or there is some
ambiguity {(but not both!). The meaning of mathematical statements
must be precise and so we avoid these ambiguities by always using ‘or’
in the inclusive way determined by the above truth table.

The connective ‘or’ is sometimes hidden in other notation. For ex-
ample when we write ‘a < b’ where a and b are real numbers this is a
shorthand for ‘a < b or @ = b’. Thus both the statements ‘1 < 2’ and
‘2 < 2’ are true.

Similarly ‘a = £¥’ is a shorthand for ‘a = b or a = —b’. There is some
possibility of confusion here for the true statement that 1 = +1 does not
mean that 1 and +1 are interchangeable: ‘if 22 = 1 then z = +1’is a
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true statement whereas ‘if 22 = 1 then £ = 1’ is a false statement! It is
necessary to be clear that ¢ = +b is not asserting that a single equality
is true but is asserting that one (or both) of two equalities a = b, a = —b
is true. The following truth table illustrating this may help.

a b |a=b a=-—b|a=:tb
1 2 F F F
1 1 T F T
2 -2 F T T
0 0 T T T

Observe how the truth values in the final column may be read off from
the truth values in the previous two columns using the truth table for
‘or’ (Table 1.2.1).

In fact the statement @ = +b can be written as a single equation,
namely |a| = |b] where |a| denotes the absolute value of a (ie. |a| =
aifa>0and|a|]=—aifa<0).

The connective ‘and’

‘We use this when we wish to assert that two things are both true. Again
this word can be hidden in other words or notation. Thus if we assert
that

7 lies between 3 and 4
or in symbols
I<nr<4

then this means that
m>3and T < 4

which is called the conjunction of the two statements ‘r > 3’ and ‘r < 4.
You should construct a truth table for ‘and’.

The connective ‘not’

Finally we have the idea of the negation of a statement. The negation
of a statement is true when the original statement is false and it is false
when the original statement is true. This is described by the following
truth table.
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Table 1.2.2

Plnot P
T F
F T

The negation of a statement is usually obtained by including the word
‘not’ in the statement but does require a little care since this is often
used very loosely in everyday speach.

Example 1.2.3 Consider the following statement about a polynomial
f(z) with real coefficients, such as z? + 3 or 23 — 22 — z.

(i) For real numbers q, if f(a) = 0 then a is positive (i.e. a > 0).

What is the negation of this statement? The following possibilities spring
to mind from the everyday use of ‘negation’.

(ii) For real numbers a, if f(a) = 0 then a is negative.

(iii) For real numbers a, if f(a) = 0 then a is non-positive.

(iv) For real numbers a, if f(a) # 0 then a is positive.

(v) For real numbers a, if @ is positive then f(a) = 0.

(vi) For real numbers a, if a is positive then f(a) # 0.
(vii) For real numbers a, if a is non-positive then f(a) # 0.
(viii) For some non-positive real number a, f(a) = 0.

If you think about it you will see that none but the last is the negation.
For example, if f(z) = 2° —z = z(z + 1)(z — 1) then statement (i)
is certainly false since, for the real number 0, f(0) = 0 but 0 is not
positive. On the other hand so are all the other statements apart from
(viii) which is true since 0 is a non-positive number such that f(0) = 0.
We will consider the negation of statements of this form more formally
in the next chapter.

Exercises

1.1 Construct a truth table for ‘and’ as follows.

Q| P and Q

R B !
R e B
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1.2 Construct truth tables for the statements
(i) not (P and Q);
(i) (not P) or (not Q);
(iii) P and (not Q);
(iv) (not P) or Q.

1.3 Using the truth table for ‘or’ complete the following truth table for
the statement o < b.

Bl R I~
i VR

|a<b a=b|a<b

-2

1.4 Consider the following statement.
(i) All girls are good at mathematics.

Which of the following statements is the negation of the above state-
ment?

(i1) All girls are bad at mathematics.
(iii) All girls are not good at mathematics.
(iv) Some girl is bad at mathematics.
(v) Some girl is not good at mathematics.
(vi) All children who are good at mathematics are girls.
(vii) All children who are not good at mathematics are boys.

Can you find any statements in this list which have the same meaning
as the original statement (i)?

1.5 Prove that |a|? = a2 for every real number a.



